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Abstract 
Solar disinfection (SODIS) is a simple and cost-effective method for disinfecting drinking water with 

questionable microbial quality by exposing it to sunlight in transparent containers. The effectiveness of 

SODIS relies on various parameters such as UV intensity (I), water temperature (T), and turbidity (Tu). 

This study aimed to identify the optimal regression model for predicting the inactivation rate constant of 

E. coli among 28 possible regression equations using I, T, and Tu as predictors. The 28 regression 

equations were derived from seven combinations of predictor variables (I, T, & Tu; I & T; I & Tu; T & 

Tu; I; T; and Tu; and Tu) utilizing four trends (linear, logarithmic, exponential, and power). The proposed 

models were calibrated using data collected from 33 SODIS experiments conducted over a five-month 

period from April to August 2021. Based on rankings from the Taylor diagram, the regression equation 

combining the linear trend and I & Tu as predictors demonstrated the best predictive performance. 

Residual analysis indicated that square root transformation was necessary to improve normality and 

homogeneity of residuals. Notably, turbidity within the range of 1 – 30 NTU, previously considered 

nonsignificant, became significant after the square root transformation. This study underscores the 

importance of an exhaustive approach that considers all possible combinations of predictor variables and 

trends, allowing the data to reveal patterns and correlations without premature restrictions, thereby 

ensuring no potentially valuable insights are overlooked. 
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1. Introduction 

Solar Disinfection (SODIS) is an economical and straightforward household water treatment 

(HWT) method that eliminates water-borne pathogens by exposing water in transparent 

containers to a day or two of strong sunlight [1]. The effectiveness of Solar Water Disinfection 

(SODIS) hinges upon a complex interplay of various factors, namely Ultraviolet (UV) 

intensity, water temperature, water turbidity, dissolved oxygen (DO), and dissolved organic 

matter, each exerting significant influence on the process outcome [2-5]. Among these factors, 

UV radiation intensity stands out as a pivotal determinant, governing the degree of microbial 

inactivation. UV radiation operates through a dual mechanism: directly damaging microbial 

DNA and RNA, thereby impeding replication and transcription processes [6, 7], and interacting 

with photosensitizers in water to produce reactive oxygen species (ROS) [8, 9]. These ROS, 

comprising singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals, are highly 

reactive, and can attack cellular components like DNA, proteins, and lipids, culminating in cell 

death [10-13]. The role of DO is equally crucial, as it facilitates ROS production. Strategies such 

as vigorous agitation of partially filled containers before topping them off have been proposed 

to enhance DO content and optimize SODIS performance [14]. Solar heat increases water 

temperature, which causes cell death by denaturing proteins, disrupting molecular structures, 

and inhibiting DNA repair mechanisms [15, 16].  

Turbidity, stemming from suspended particles, compromise SODIS efficacy by absorbing and 

scattering UV radiation, diminishing its penetration depth and microbial inactivation 

effectiveness [3]. Research underscores the detrimental impact of turbidity on SODIS efficacy, 

with higher turbidity levels correlating with decreased pathogen removal rates and fostering 

conditions conducive to post-irradiation regrowth of pathogens [15, 17, 18]. Moreover, dissolved 

organic matter, including humic acids, can impede disinfection efficacy by acting as internal 
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UV filters, absorbing UVA radiation, although the precise 

mechanism remains unclear and may vary based on organic 

material type and concentration [4].  

It is important to note that the functional relationship between 

SODIS effectiveness and the mentioned process parameters 

remains underexplored, despite their significant impact. Few 

studies have delved into this relationship, with second-order 

polynomial regression analysis being a prevalent tool. 

Gómez‐Couso et al. [18] used multifactorial regression to 

examine the joint effect of radiation intensity, water turbidity, 

and exposure time on C. parvum oocysts, highlighting 

significant interactions between radiation intensity and 

exposure time. Mansoor Ahammed et al. [19] employed 

response surface regression, uncovering a significant 

turbidity-dissolved oxygen interaction in optimizing bacterial 

removal. Recently, Samoili et al. [16] introduced an innovative 

approach combining static and dynamic multivariate linear 

regression models to characterize the E. coli inactivation 

curve, demonstrating robustness across varied climates. 

However, Nwankwo et al. [20] faced collinearity issues in their 

regression model, hindering precise estimates due to high UV 

and temperature correlation in the study area. Separate 

regression equations for UV and temperature were the only 

alternative to deal with this issue, albeit with reduced 

prediction accuracy. It is also noteworthy that while second-

order polynomial regression analysis has been commonly 

used, other trends such as linear, logarithmic, exponential, and 

power trends have received little attention. Therefore, the 

objective of the present study was to compare various trends 

and find optimal regression model for the prediction of 

pathogen inactivation rate in SODIS using UV intensity, 

water temperature, and water turbidity as predictor variables. 

 

2. Materials and Method 

2.1 Experimental setup  

The regression data were collected through 33 SODIS 

experiments conducted over 5 months between April and 

August 2021. The experimental setup involved a 1.5 L Coca-

Cola polyethylene terephthalate (PET) bottle equipped with a 

mercury-in-glass thermometer and positioned on an 

absorptive surface (black styrofoam material), as illustrated in 

Figure 1. Coca-Cola PET bottles have become the preferred 

plastic container due to their thermal stability, durability, and 

resistance to scratches and abrasion during prolonged use. 

Additionally, Coca-Cola PET is widely available worldwide. 

The absorptive support was expected to expedite water 

temperature increase by trapping and transmitting absorbed 

heat directly to the water. To prevent leakage without glue, 

the thermometer was tightly fitted through a catheter hub 

before insertion into a hole made in the plastic bottle's cork. 

Temperature was monitored at 30-minute intervals to obtain 

the daily maximum temperature. Thermometer accuracy was 

ensured by regular cross-checking with a reference digital 

thermometer at the National Centre for Energy Research and 

Development (NCERD), confirming that the experimental 

thermometer measured within +0.2 °C of the reference digital 

thermometer. 

 

 
 

Fig 1: Experimental setup 

 

2.2 Test water preparation, cultivation and enumeration 

of E. coli  

E. coli was selected as the model pathogen for this study due 

to its role as an indicator of fecal contamination and its 

frequent examination in SODIS research, as it exhibits greater 

resistance to sunlight's germicidal effects compared to many 

other bacteria [2]. The cultivation and enumeration procedure 

for E. coli were detailed in Ubomba-Jaswa et al. [21]. Test 

water for all experiments was drawn from a 200 L plastic 

water storage drum collected in one batch from a borehole 

source to maintain consistent physicochemical properties, 

which were monitored monthly. Before each experiment, the 

test water was sterilized and then contaminated from a 

previously cultivated E. coli stock, achieving approximately 

10^6 CFU/mL through appropriate dilution. Bottles were 

filled two-thirds full, vigorously shaken to enhance oxygen 

absorption, and then topped up to full volume, ensuring 

dissolved oxygen (DO) values of 6.1±0.21 mg/L. The test 

water was confirmed free of chlorine. Turbid water was 

prepared by adding kaolin (China clay) to the test water until 

the desired turbidity level was reached. Turbidity levels of test 

water for experiments were randomly varied between 1 and 

30 NTU. Initial samples were collected from the reactors 

before solar exposure, with subsequent samples taken at 30-

minute intervals or longer, depending on the received 

radiation since the last sampling, using a sterilized 

hypodermic syringe.  

Ultraviolet radiation was measured with a digital UV light 

meter (General Tools UV513AB Digital UVA/UVB Meter, 

280–400 nm), which displays radiant energy per unit area in 

mW/cm² or μW/cm² on its LCD screen (see Figure 1). 

Readings were captured using the Open Camera 1.48.3 app 

for Android phones, capable of taking shots repeatedly at 

preset time intervals. During experiments, the camera was set 

up to capture the LCD screen of the UV meter every 60 

seconds from 10 a.m. to 4 p.m. These readings were utilized 

to estimate the daily UV profile, assessing the daily maximum 

of 5-hour averages of UV intensity between 10 a.m. and 4 

p.m. 
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The inactivation rate constant of E. coli was evaluated using 

the classic first-order kinetics based on Chick’s law [22]. 

Chick’s law is given as follows:  , 

where  is the E. coli concentration at time ;  is the 

initial concentration of E. coli;  is the exponential 

function; and  is inactivation rate constant of E. coli. The 

value of  was determined by regressing  with 

respect to . All statistical analysis, including the computation 

of regression parameters and test of assumptions, were 

executed with Real Statistics Using Excel (version: Rel 8.9.1, 

released 2 October 2023). Regression theory, as well as the 

procedure for model development and test of regression 

assumptions can be found in Introduction to Linear 

Regression Analysis by Montgomery et al. [23] 

 

2.3 Procedure for the selection of optimal regression 

equations 

The response variable is the inactivation rate constant of E. 

coli ( ); whereas, the predictor variables are 5-h average of 

around-noon UV intensity ( ), maximum water temperature 

( ), and water turbidity ( ). To find the optimal regression 

model, all the 7 possible combinations of the predictor 

variables ( ; ; ; ; ; : and ) 

were regressed against  using the four proposed trends 

(Linear, Logarithmic, Exponential, and power trends), which 

resulted in a total of 28 model equations (7 possible 

combinations multiplied by 4 trends equals 28), as shown in 

Table 2.  

The flowing steps were applied to narrow down to the optimal 

model equation: 

1. Fit the full model (The model with all of the predictor 

variable under consideration).  

2. Perform a thorough analysis of each model and trend, 

including a full residual analysis and test of assumptions. 

Also investigate the possibility of collinearity. 

3. Determine if there is need for transformation or otherwise 

based on the analysis in (2) above. After transformation, 

repeat the analysis in (2) above to evaluate improvement 

and determine model adequacy.  

4. Use Student’s t-test on individual predictor variables to 

edit the model, so that model equations with a non-

significant coefficient are not considered further. In cases 

where only the intercept term ( ) is not significant, 

regress the model again without the intercept term. 

5. Finally, rank the remaining model equations using Taylor 

diagram, so that the best model can be selected based on 

correlation, RMSE, and closeness of the fitted and the 

observed standard deviation. 

 

3. Results and Discussion 

3.1 Model building process 

Table 2 show the results for the test of regression assumptions 

before the square root transformation was applied. While the 

normality test was performed using Shapiro-Wilk method, 

heteroscedasticity (Stability of variance) and autocorrelation 

were tested using Breusch-Pagan and Durbin-Watson 

statistics, respectively. All tests were performed at 95% 

confidence interval ( ). The result revealed that the 

regression data required transformation and improvement. It 

can be seen that none of the proposed regression equations 

passed all the three assumption tests. To improve the 

regression data, square root transformation was applied to the 

response variable . Square root transformation is usually 

employed where the residual plot forms an out-ward opening 

funnel [23]. A plot of studentized residual versus predicted 

response for the full linear model is shown in Figure 1, and it 

can be seen that the plot is shaped like an outward-opening 

funnel. Tables 2 and 3 show the result of assumption tests for 

the original and the transformed data. There is notable 

improvement in the number of models that meets the 

regression criterion after the square root transformation of the 

response variable was applied. In general, the normality rate 

of the residuals increased from 14% before transformation to 

54% after transformation. Likewise, the percentage of models 

with stable variance (homogenous variance) increased from 

initial 61% to 86% after transformation. No changes were 

observed in the autocorrelation rate after transformation.  

 

 
 

Fig 2: Residual Plot for full linear model ( ) 
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The 28 models generated from the transformed data 

underwent assumption tests. Models failing any assumption 

test were excluded from further consideration. In total, 11 

regression models (Models with serial number 1, 2, 3, 4, 5, 6, 

8, 9, 10, 11, 12, and 18 in Table 3) out of the 28 models 

satisfied all three regression assumptions. All the equations 

with exponential and power trends were eliminated at this 

stage, remaining only equations with linear and logarithmic 

trends. Not that regression equations with “unclear” Durbin-

Watson autocorrelation result were also eliminated at this 

stage. Subsequently, the regression equations of these 11 

models underwent student’s t-test editing so that models with 

a non-significant coefficient could be eliminated. The 

intercept term was removed for models with non-significant 

intercept terms and the regressions were re-run with no 

intercept term. Six models (Models with serial number 2, 4, 5, 

6, 9 and 12) retained after the t-test editing. To identify the 

optimal regression model, the performance of these 6 models 

was compared using Taylor’s diagram as well as Box and 

Whisker plot. The Taylor diagram shown in Figure 3 

evaluates model performance by comparing correlations, root 

mean square errors (RMSE), and standard deviations. The 

position of the marker representing each model in Taylor 

diagram is determined based on these metrics. Models are 

then assigned ranks based on the relative distance of its 

marker from the "Reference" point. The marker representing 

Mode1 4 in Table 4 

( ) is the closest 

to the “Reference” and therefore is considered the best model. 

Unexpectedly the model that emerged the best does not 

contain UV intensity ( ) as a predictor. UV intensity is known 

to be the most important process parameter in SODIS. One 

plausible explanation for this anomaly is the high correlation 

between UV intensity and water temperature. This means that 

the temperature variable may have captured the variability of 

pathogen die-off rate as much as UV intensity, and captured 

the variability more when combined with turbidity. Moreover, 

to large extent, especially in the Tropics, variability in solar 

radiation can be captured by temperature [24, 25]. However, the 

model that ranked second 

( ) 

contained both UV intensity and water temperature as 

predictors. 

Box-and-whisker plots (see Figure 4) were used to compare 

the distributional characteristics of observed and predicted 

responses. In these plots, the upper and lower lines of the box 

represent the 25th and 75th percentiles, respectively. The 

height of the box signifies the interquartile range, while the 

line and asterisk at the middle indicate the median and mean, 

respectively. Whiskers extend above and below the box, with 

any point outside them considered a potential outlier. It can be 

observed that, except for the two outliers, the distributional 

characteristics of the observed response are reasonably 

preserved in the six regression models. 

 

3.2 Effect of UV intensity and water temperature  

The results show that UV intensity and water temperature 

have strong influence on die-off rate of E. coli. The two-

process parameter can be used to explain more than 99% 

variability in E. coli die-off rate. Other studies, including 

those by Brockliss et al. [26] and Samoili et al. [16], have 

similarly reported a high correlation when the cumulative die-

off rate of E. coli was regressed using irradiance and water 

temperature as predictors. Despite the higher R-square values 

recorded by the regression equations that contain  and   as 

predictors, Taylor diagram ranked them low due to the higher 

RMSE and larger difference between the standard deviation of 

the fitted and the observed responses. It is important to note 

that the VIF value of these regression equations suggest high 

correlation between UV intensity and water temperature. 

Where one or more predictor variables are highly correlated, 

the R-squared value can become artificially inflated and 

misleading, suggesting a better fit than actually exists [27]. 

This is particularly relevant in tropical regions where sunny 

periods are typically accompanied by high temperatures, as 

highlighted by Nwankwo and Agunwamba [24]. Weather 

conditions such as 'sunny and cold' are rare occurrences in the 

study area. Therefore, future regression models should 

address the potential interference between water temperature 

and UV intensity by either eliminating one of the variables or 

exploring alternative methods to handle multicollinearity 

effectively. 

The rankings of the single variable models (Models ranking 3, 

4, and 6 in Table 1) revealed that maximum water 

temperature provided a superior fit compared to UV intensity. 

This indicates that, in this region, maximum water 

temperature serves as a more reliable predictor of SODIS 

efficiency than average UV intensity. A prior study noted that 

daily maximum water temperature could contain some 

dosimetric information [24]. For instance, complete 

inactivation was observed in all experiments where water 

temperature exceeded 45 °C. In the Tropics, maximum water 

temperature typically occurs between 1 and 3 p.m. [25]. 

Furthermore, temperature data is more cost-effective to 

acquire and may require only a simple mercury-in-glass 

thermometer, costing less than a dollar, compared to the 

expensive 'high-tech' devices required for UV light intensity 

measurement. 

 

3.3 Effect of water turbidity on SODIS efficiency 

Water turbidity is a critical consideration in applying SODIS, 

as previous studies consistently demonstrate a notable 

decrease in its efficacy as turbidity levels rise [15, 18, 28]. 

However, these studies examined water with turbidity levels 

well beyond those tested in our study. Over time, a turbidity 

threshold of 30 NTU has emerged as a criterion for selecting 

SODIS water, with Luzi et al. [1] proposing a simple test for 

determining if water turbidity is below this threshold. It's 

recommended to pretreat water to reduce turbidity below 30 

NTU as part of the SODIS protocol. Our results show that the 

regression coefficient for the turbidity variable is significant, 

indicating substantial evidence that water turbidity within the 

range of 1–30 NTU significantly affects E. coli inactivation 

rates. Amirsoleimani & Brion [28] also found a statistically 

significant difference (t-test: p < 0.001) between the E. coli 

inactivation rates of 0 and 30 NTU SODIS water, highlighting 

the protective nature of turbidity in this range, which can help 

a significant number of E. coli evade inactivation by UV 

radiation. These results contrast with those of Nwankwo et al. 
[20], who found the turbidity variable to be nonsignificant in 

regression analysis, both alone and when combined with other 

predictor variables. However, the study by Nwankwo et al. [20] 

did not assess regression assumptions and therefore applied 

no transformation to mitigate data ill-conditioning. 

It's important to note that in turbid water, while the direct 

effect of UVB on the major cellular components of bacterial 

pathogens at the inner layer of SODIS water is obstructed by 
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suspended particles, the absorbed and scattered portions of 

UVA in water remain effective. These can still generate 

reactive oxygen species (ROS) capable of migrating to inner 

water layers and killing pathogens [1]. This likely explains 

why complete disinfection can still be achieved in turbid 

water, even when most cells do not directly receive sunlight. 

Another factor contributing to disinfection in turbid water is 

water temperature, which tends to be higher due to the 

capacity of suspended particles to trap radiant heat emitted by 

the sun as infrared (IR). Amirsoleimani & Brion [28] observed 

a statistically significant difference in temperatures between 

SODIS water with turbidity levels of 0 and 30 NTU under the 

same conditions, with SODIS containers containing 30 NTU 

water being notably warmer. Surprisingly, Studies have 

shown improved efficiency in SODIS when treating 

moderately turbid water (38 NTU) compared to water with 

lower turbidity levels (<5 NTU) [29]. Complete inactivation 

can be achieved in SODIS-treated water with higher turbidity 

levels, provided that temperatures of 55 °C and above are 

reached [30]. 

While higher turbidity levels (>30 NTU) may offer a 

temperature advantage, they are not desirable qualities in 

SODIS water. SODIS-treated water exhibits greater 

durability, with no bacteria regrowth, when clear water is 

used provided the necessary UV dose for complete 

disinfection is reached [31, 32]. Furthermore, highly turbid water 

can significantly diminish the aesthetics and user acceptance 

of SODIS-treated water. 

 

 
 

Fig 3: Taylor diagram, comparing the predictive performance of the proposed models 

 
Table 1: Rankings of significant regression equations based on Taylor diagram 

 

Models retained after t-test Ranking based Taylor diagram 

 
5 

 
1 

 
6 

 
3 

 
2 

 
4 

 

 
 

Fig 4: Box and Whisker’s plot, comparing the distributional characteristics the proposed models 
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Table 2: Test of regression assumptions before transformation of response variable ( ) 
 

SN Trend Proposed Model 
Shapiro-Wilk (SW) Normality 

Test 
Durbin-Watson (DW) Autocorrelation Test 

Breusch-Pagan (BP) Heteroscedasticity 

Test for Stability of Variance 

   SW-stat p-value Normal? DW-stat DW-lower DW-upper 
Auto 

correlated? 
F stat df1 df2 p-value 

Stable 

variance? 

1 Linear 𝑘𝑒 = 𝛽𝑜 + 𝛽1(𝐼) + 𝛽2(𝑇𝑚) + 𝛽3(𝑇𝑢) 0.944 0.087 Yes 2.283 1.258 1.651 No 3.97 3 29 0.017 No 

2 Linear 𝑘𝑒 = 𝛽𝑜 + 𝛽1(𝐼) + 𝛽2(𝑇𝑚) 0.935 0.05 No 2.215 1.321 1.577 No 4.974 2 30 0.014 No 

3 Linear 𝑘𝑒 = 𝛽𝑜 + 𝛽1(𝐼) + 𝛽3(𝑇𝑢) 0.924 0.024 No 2.269 1.321 1.577 No 2.589 2 30 0.092 Yes 

4 Linear 𝑘𝑒 = 𝛽𝑜 + 𝛽2(𝑇𝑚) + 𝛽3(𝑇𝑢) 0.931 0.037 No 2.425 1.321 1.577 Unclear 6.503 2 30 0.005 No 

5 Linear 𝑘𝑒 = 𝛽𝑜 + 𝛽1(𝐼) 0.923 0.022 No 2.259 1.383 1.508 No 5.23 1 31 0.029 No 

6 Linear 𝑘𝑒 = 𝛽𝑜 + 𝛽2(𝑇𝑚) 0.921 0.02 No 2.368 1.383 1.508 No 11.036 1 31 0.002 No 

7 Linear 𝑘𝑒 = 𝛽𝑜 + 𝛽3(𝑇𝑢) 0.982 0.844 Yes 0.775 1.383 1.508 Yes 0.024 1 31 0.879 Yes 

8 Logarithmic 𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) + 𝛽2 log𝑒(𝑇𝑚) + 𝛽3 log𝑒(𝑇𝑢) 0.908 0.009 No 2.289 1.258 1.651 No 2.248 3 29 0.104 Yes 

9 Logarithmic 𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) + 𝛽2 log𝑒(𝑇𝑚) 0.907 0.008 No 2.288 1.321 1.577 No 3.522 2 30 0.042 No 

10 Logarithmic 𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) + 𝛽3 log𝑒(𝑇𝑢) 0.876 0.001 No 2.343 1.321 1.577 No 1.689 2 30 0.202 Yes 

11 Logarithmic 𝑘𝑒 = 𝛽𝑜 + 𝛽2 log𝑒(𝑇𝑚) + 𝛽3 log𝑒(𝑇𝑢) 0.902 0.006 No 2.336 1.321 1.577 No 4.496 2 30 0.02 No 

12 Logarithmic 𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) 0.888 0.003 No 2.363 1.383 1.508 No 3.448 1 31 0.073 Yes 

13 Logarithmic 𝑘𝑒 = 𝛽𝑜 + 𝛽2 log𝑒(𝑇𝑚) 0.897 0.004 No 2.345 1.383 1.508 No 9.156 1 31 0.005 No 

14 Logarithmic 𝑘𝑒 = 𝛽𝑜 + 𝛽3 log𝑒(𝑇𝑢) 0.984 0.907 Yes 0.759 1.383 1.508 Yes 0.38 1 31 0.542 Yes 

15 Exponential 𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) × exp𝛽2(𝑇𝑚) × exp𝛽3(𝑇𝑢) 0.91 0.01 No 1.473 1.258 1.651 Unclear 1.671 3 29 0.195 Yes 

16 Exponential 𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) × exp𝛽2(𝑇𝑚) 0.912 0.011 No 1.272 1.321 1.577 Yes 3.948 2 30 0.03 No 

17 Exponential 𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) × exp𝛽3(𝑇𝑢) 0.896 0.004 No 1.563 1.321 1.577 Unclear 3.027 2 30 0.063 Yes 

18 Exponential 𝑘𝑒 = 𝛽𝑜 exp𝛽2(𝑇𝑚) × exp𝛽3(𝑇𝑢) 0.895 0.004 No 1.65 1.321 1.577 No 0.951 2 30 0.398 Yes 

19 Exponential 𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) 0.879 0.002 No 1.49 1.383 1.508 Unclear 3.409 1 31 0.074 Yes 

20 Exponential 𝑘𝑒 = 𝛽𝑜 exp𝛽2(𝑇𝑚) 0.91 0.01 No 1.504 1.383 1.508 Unclear 3.909 1 31 0.057 Yes 

21 Exponential 𝑘𝑒 = 𝛽𝑜 exp𝛽3(𝑇𝑢) 0.888 0.003 No 0.619 1.383 1.508 Yes 2.305 1 31 0.139 Yes 

22 Power 𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1 × (𝑇𝑚)

𝛽2 × (𝑇𝑚)
𝛽3  0.936 0.052 Yes 1.43 1.258 1.651 Unclear 2.483 3 29 0.081 Yes 

23 Power 𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1 × (𝑇𝑚)

𝛽2 0.934 0.044 No 1.398 1.321 1.577 Unclear 4.918 2 30 0.014 No 

24 Power 𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1 × (𝑇𝑢)𝛽3  0.933 0.042 No 1.757 1.321 1.577 No 2.989 2 30 0.065 Yes 

25 Power 𝑘𝑒 = 𝛽𝑜(𝑇𝑚)
𝛽2 × (𝑇𝑢)𝛽3  0.916 0.014 No 1.581 1.321 1.577 No 1.224 2 30 0.308 Yes 

26 Power 𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1 0.932 0.04 No 1.753 1.383 1.508 No 4.947 1 31 0.034 No 

27 Power 𝑘𝑒 = 𝛽𝑜(𝑇𝑚)
𝛽2 0.93 0.034 No 1.575 1.383 1.508 No 3.66 1 31 0.065 Yes 

28 Power 𝑘𝑒 = 𝛽𝑜(𝑇𝑢)
𝛽3 0.892 0.003 No 0.603 1.383 1.508 Yes 1.784 1 31 0.191 Yes 

 – inactivation rate constant of E. coli;  – 5-hour average of around-noon UV intensity;  – maximum water temperature;  – water turbidity. , ,  and  are regression coefficients. 
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Table 3: Test of regression assumptions using transformed response variable ( ) 
 

SN Trend Proposed Model 
Shapiro-Wilk (SW) Normality 

Test 
Durbin-Watson (DW) Autocorrelation Test 

Breusch-Pagan (BP) Heteroscedasticity 

Test for Stability of Variance 

   SW-stat p-value Normal? DW-stat DW-lower DW-upper 
Auto 

correlated? 
F stat df1 df2 p-value 

Stable 

variance? 

1* Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽1(𝐼) + 𝛽2(𝑇𝑚) + 𝛽3(𝑇𝑢) 0.988 0.97 Yes NA NA NA NA 0.627 3 29 0.603 Yes 

2* Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽1(𝐼) + 𝛽2(𝑇𝑚) 0.971 0.494 Yes NA NA NA NA 0.262 2 30 0.772 Yes 

3* Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽1(𝐼) + 𝛽3(𝑇𝑢) 0.951 0.139 Yes 1.914 1.321 1.577 No 0.974 2 30 0.389 Yes 

4* Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽2(𝑇𝑚) + 𝛽3(𝑇𝑢) 0.971 0.519 Yes 2.191 1.321 1.577 No 1.785 2 30 0.185 Yes 

5* Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽1(𝐼) 0.947 0.109 Yes 1.876 1.383 1.508 No 0.304 1 31 0.585 Yes 

6* Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽2(𝑇𝑚) 0.978 0.73 Yes 2.047 1.383 1.508 No 2.039 1 31 0.163 Yes 

7 Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽3(𝑇𝑢) 0.959 0.247 Yes 0.646 1.383 1.508 Yes 0.935 1 31 0.341 Yes 

8* Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) + 𝛽2 log𝑒(𝑇𝑚) + 𝛽3 log𝑒(𝑇𝑢) 0.977 0.686 Yes 2.045 1.258 1.651 No 1.444 3 29 0.25 Yes 

9* Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) + 𝛽2 log𝑒(𝑇𝑚) 0.974 0.587 Yes 2.038 1.321 1.577 No 2.062 2 30 0.145 Yes 

10* Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) + 𝛽3 log𝑒(𝑇𝑢) 0.975 0.632 Yes 2.183 1.321 1.577 No 0.811 2 30 0.454 Yes 

11* Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽2 log𝑒(𝑇𝑚) + 𝛽3 log𝑒(𝑇𝑢) 0.981 0.818 Yes 2.163 1.321 1.577 No 2.78 2 30 0.078 Yes 

12* Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) 0.98 0.78 Yes 2.209 1.383 1.508 No 1.18 1 31 0.286 Yes 

13 Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽2 log𝑒(𝑇𝑚) 0.973 0.555 Yes 2.171 1.383 1.508 No 4.707 1 31 0.038 No 

14 Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽3 log𝑒(𝑇𝑢) 0.964 0.328 Yes 0.631 1.383 1.508 Yes 1.23 1 31 0.276 Yes 

15 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) × exp𝛽2(𝑇𝑚) × exp𝛽3(𝑇𝑢) 0.91 0.01 No 1.473 1.258 1.651 Unclear 1.671 3 29 0.195 Yes 

16 Exponential √𝑘𝑒 = 𝛽𝑜 exp 𝛽1(𝐼) × exp𝛽2(𝑇𝑚) 0.912 0.011 No 1.272 1.321 1.577 Yes 3.948 2 30 0.03 No 

17 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) × exp𝛽3(𝑇𝑢) 0.896 0.004 No 1.563 1.321 1.577 Unclear 3.027 2 30 0.063 Yes 

18* Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽2(𝑇𝑚) × exp𝛽3(𝑇𝑢) 0.895 0.004 No 1.65 1.321 1.577 No 0.951 2 30 0.398 Yes 

19 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) 0.879 0.002 No 1.49 1.383 1.508 Unclear 3.409 1 31 0.074 Yes 

20 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽2(𝑇𝑚) 0.91 0.01 No 1.504 1.383 1.508 Unclear 3.909 1 31 0.057 Yes 

21 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽3(𝑇𝑢) 0.888 0.003 No 0.619 1.383 1.508 Yes 2.305 1 31 0.139 Yes 

22 Power √𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1 × (𝑇𝑚)

𝛽2 × (𝑇𝑚)
𝛽3  0.936 0.052 Yes 1.43 1.258 1.651 Unclear 2.483 3 29 0.081 Yes 

23 Power √𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1 × (𝑇𝑚)

𝛽2  0.934 0.044 No 1.398 1.321 1.577 Unclear 4.918 2 30 0.014 No 

24 Power √𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1 × (𝑇𝑢)𝛽3  0.933 0.042 No 1.757 1.321 1.577 No 2.989 2 30 0.065 Yes 

25 Power √𝑘𝑒 = 𝛽𝑜(𝑇𝑚)
𝛽2 × (𝑇𝑢)𝛽3  0.916 0.014 No 1.581 1.321 1.577 No 1.224 2 30 0.308 Yes 

26 Power √𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1  0.932 0.04 No 1.753 1.383 1.508 No 4.947 1 31 0.034 No 

27 Power √𝑘𝑒 = 𝛽𝑜(𝑇𝑚)
𝛽2  0.93 0.034 No 1.575 1.383 1.508 No 3.66 1 31 0.065 Yes 

28 Power √𝑘𝑒 = 𝛽𝑜(𝑇𝑢)
𝛽3  0.892 0.003 No 0.603 1.383 1.508 Yes 1.784 1 31 0.191 Yes 

 – inactivation rate constant of E. coli;  – 5-hour average of around-noon UV intensity;  – maximum water temperature;  – water turbidity. , ,  and  are regression coefficients; NA – Not 

applicable; asterisk (*) – passed the three regression assumptions 
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Table 4: Regression results using transformed response variable ( ) 
 

SN Trend Proposed Model  RMSE Std.            

1 Linear √𝑘𝑒 = 𝛽1(𝐼) + 𝛽2(𝑇𝑚) + 𝛽3(𝑇𝑢) 0.995 0.121 0.328 NA NA 0.019 <0.001 6.749 0.02 <0.001 6.572 -0.004 0.144 1.083 

2* Linear √𝑘𝑒 = 𝛽1(𝐼) + 𝛽2(𝑇𝑚) 0.995 0.126 0.325 NA NA 0.022 <0.001 6.277 0.016 <0.001 6.277    

3 Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽1(𝐼) + 𝛽3(𝑇𝑢) 0.841 0.143 0.348 0.299 0.038 0.031 <0.001 1.034    -0.001 0.744 1.034 

4* Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽2(𝑇𝑚) + 𝛽3(𝑇𝑢) 0.911 0.107 0.361 -1.142 <0.001    0.066 <0.001 1.007 -0.005 0.043 1.007 

5* Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽1(𝐼) 0.846 0.144 0.348 0.273 0.021 0.031 <0.001 NA       

6* Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽2(𝑇𝑚) 0.901 0.115 0.359 -1.261 <0.001    0.066 <0.001     

7 Linear √𝑘𝑒 = 𝛽𝑜 + 𝛽3(𝑇𝑢) 0.005 0.365 0.072 1.872 <0.001       -0.009 0.289  

    RMSE Std.            

8 Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) + 𝛽2 log𝑒(𝑇𝑚) + 𝛽3 log𝑒(𝑇𝑢) 0.921 0.099 0.364 -7.277 <0.001 0.5 0.033 9.827 1.872 <0.001 9.62 -0.008 0.782 1.071 

9* Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) + 𝛽2 log𝑒(𝑇𝑚) 0.924 0.099 0.363 -7.264 <0.001 0.515 0.023 9.3 1.849 <0.001 9.3    

10 Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) + 𝛽3 log𝑒(𝑇𝑢) 0.88 0.124 0.355 -3.523 <0.001 1.363 <0.001 1.036    0.013 0.705 1.036 

11 Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽2 log𝑒(𝑇𝑚) + 𝛽3 log𝑒(𝑇𝑢) 0.911 0.107 0.361 -9.011 <0.001    2.843 <0.001 1.014 -0.022 0.448 1.014 

12* Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽1 log𝑒(𝐼) 0.884 0.125 0.355 -3.464 <0.001 1.357 <0.001 NA       

13 Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽2 log𝑒(𝑇𝑚) 0.912 0.108 0.361 -9.125 <0.001    2.857 <0.001 NA    

14 Logarithmic √𝑘𝑒 = 𝛽𝑜 + 𝛽3 log𝑒(𝑇𝑢) -0.009 0.367 0.057 1.944 <0.001       -0.083 0.4 NA 

    RMSE Std.            

15 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) × exp𝛽2(𝑇𝑚) × exp𝛽3(𝑇𝑢) 0.884 0.082 0.243 -1.262 <0.001 0.003 0.333 6.749 0.037 <0.001 6.572 -0.004 0.075 1.083 

16 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) × exp 𝛽2(𝑇𝑚) 0.875 0.087 0.241 -1.277 <0.001 0.005 0.152 6.277 0.034 <0.001 6.277    

17 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) × exp𝛽3(𝑇𝑢) 0.788 0.113 0.23 -0.406 0.001 0.02 <0.001 1.034    -0.001 0.565 1.034 

18 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽2(𝑇𝑚) × exp𝛽3(𝑇𝑢) 0.884 0.083 0.243 -1.387 <0.001    0.044 <0.001 1.007 -0.004 0.037 1.007 

19 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽1(𝐼) 0.793 0.113 0.23 -0.441 <0.001 0.02 <0.001 NA       

20 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽2(𝑇𝑚) 0.87 0.09 0.24 -1.482 <0.001    0.045 <0.001 NA    

21 Exponential √𝑘𝑒 = 𝛽𝑜 exp𝛽3(𝑇𝑢) 0.013 0.247 0.054 0.628 <0.001       -0.006 0.243 NA 

    RMSE Std.            

22 Power √𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1 × (𝑇𝑚)

𝛽2 × (𝑇𝑚)
𝛽3  0.907 0.073 0.246 -5.762 <0.001 0.271 0.112 9.827 1.392 <0.001 9.62 -0.017 0.432 1.071 

23 Power √𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1 × (𝑇𝑚)

𝛽2  0.908 0.148 0.491 -11.472 <0.001 0.604 0.069 9.3 2.685 <0.001 9.3    

24 Power √𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1 × (𝑇𝑢)𝛽3  0.858 0.092 0.239 -2.972 <0.001 0.913 <0.001 1.036    -0.001 0.967 1.036 

25 Power √𝑘𝑒 = 𝛽𝑜(𝑇𝑚)
𝛽2 × (𝑇𝑢)𝛽3  0.902 0.077 0.245 -6.703 <0.001    1.919 <0.001 1.014 -0.024 0.249 1.014 

26 Power √𝑘𝑒 = 𝛽𝑜(𝐼)
𝛽1  0.863 0.092 0.239 -2.976 <0.001 0.914 <0.001 NA       

27 Power √𝑘𝑒 = 𝛽𝑜(𝑇𝑚)
𝛽2  0.901 0.078 0.244 -6.828 <0.001    1.934 <0.001 NA    

28 Power √𝑘𝑒 = 𝛽𝑜(𝑇𝑢)
𝛽3  -0.001 0.249 0.045 0.69 0.001       -0.065 0.33 NA 

 – inactivation rate constant of E. coli;  – 5-hour average of around-noon UV intensity;  – maximum water temperature;  – water turbidity. , ,  and  are regression coefficients; NA – Not 

applicable; asterisk (*) – all regression coefficients are significant ( ) 
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4. Conclusions 

Regression models offer a powerful tool for understanding the 

intricate relationship between SODIS treatment efficiency and 

various treatment conditions. Despite the importance attached to UV 

intensity in SODIS, temperature might wield a more substantial 

influence on SODIS efficiency than previously recognized. Given 

the high correlation between UV intensity and water temperature, 

caution is warranted when combining them in a single least-square 

regression equation, as this may artificially inflate the R-square 

value, suggesting a better fit than reality. Thus, it's imperative to 

assess and address the degree of dependence between these 

parameters before their incorporation into regression models for 

predicting SODIS efficiency. To enhance regression assumptions of 

normality and homogeneity of residuals, particularly when the 

residual plot resembles an outward opening funnel, employing 

square root transformation on the response variable proves effective. 

This transformation also aids in reinforcing the statistical 

significance of regression coefficients. Notably, turbidity within the 

range of 1 – 30 NTU, previously deemed nonsignificant, gains 

significance after square root transformation. Adopting an exhaustive 

approach by considering all possible combinations of predictor 

variables facilitates a thorough exploration of potential relationships 

between predictors and the response variable. Such approach would 

allow the data to speak for itself without imposing restrictions 

prematurely and ensures that no potentially valuable patterns or 

correlations are overlooked. 
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